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Functional near infrared spectroscopy (fNIRS) is a technique that is used for noninvasive
measurement of the oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb) concentrations in
the brain tissue. Since the ratio of the concentration of these two agents is correlated with the
neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity.
The portability of fNIRS makes it a good candidate for studies involving subject's movement.
The fNIRS measurements, however, are sensitive to artifacts generated by subject's head motion.
This makes fNIRS signals less e®ective in such applications. In this paper, the autoregressive
moving average (ARMA) modeling of the fNIRS signal is proposed for state-space representation
of the signal which is then fed to the Kalman ¯lter for estimating the motionless signal from
motion corrupted signal. Results are compared to the autoregressive model (AR) based approach,
which has been done previously, and show that the ARMA models outperform AR models. We
attribute it to the richer structure, containing more terms indeed, of ARMA than AR. We show
that the signal to noise ratio (SNR) is about 2 dB higher for ARMA based method.

Keywords: Brain; Gaussian noise; linear model; state estimation.

1. Introduction

Functional near infrared spectroscopy (fNIRS) is a
relatively recent technique for noninvasive mea-
surement of oxygenated hemoglobin (oxy-Hb) and

deoxygenated hemoglobin (deoxy-Hb) concentra-

tions in the human brain.1 Other applications include

quality control, pharmacology and medical diag-

noses.2 Basically, a typical fNIRS system is composed
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of one or a number of light sources in near infrared
(NIR) range (700–900nm), and several detectors that
collect the re°ected photons from the brain tissue.
In this spectrum, water and vital tissues are relatively
transparent and by investigating the collected light
intensities (fNIRS signals), the properties of the
medium through which the light has passed can be
identi¯ed.2,3

This technique is a®ordable, portable and
capable of being used in real ¯eld applications.2,4,5

Also, fNIRS is safe compared to other imaging
techniques such as X ray imaging, positron emission
tomography (PET), nuclear medicine and com-
puted tomography (CT). As such, it has been
widely used for studies with vulnerable populations
such as neonates. However, such applications entail
inevitable head movements. As the head motion
can increase the blood °ow through the scalp and
rarely causes an increase in brain's blood pressure,2

therefore, motion artifact may change original signal
and lead to incorrect result or misguided diagnose.

Reducing head motion artifacts is therefore a key
aspect in signal processing area of fNIRS studies
and there have been a number of attempts. Adap-
tive ¯ltering is used as one of the main artifact
removal methods.6 The Wiener ¯lter was also
applied to the fNIRS signals.7 Another method to
reduce so called \head motion noise" in fNIRS sig-
nals has been developed on the principle that there
is a negative correlation between oxygenated and
deoxygenated haemoglobin concentration changes.8

A method based on moving standard deviation and
spline interpolation enables semi-automatic detec-
tion and reduction of motion artifact in near infra-
red imaging signals.9 A wavelet based approach was
used by Molavi et al.,10 Although these along with
other methods could reduce the motion artifact
from fNIRS signals but each method has some
speci¯c requirements and limitations. For example,
in the adaptive ¯lter based method,6 the algorithm
needs additional hardware and sensors which makes
it more complex and costly. The Wiener ¯lter based
method7 does not need extra instruments; however,
it needs to have the whole data simultaneously and
therefore is not applicable in real time applications.

In contrast, the Kalman ¯lter based approaches,
such as the one presented by Izzetoglu et al.,1 do not
need extra sensors and also can perform motion
artifact reduction in real time. In the Kalman ¯lter
based methods it is necessary to ¯t the input signal
to a linear model such as an autoregressive (AR)

model which was used by Izzetoglu et al.,1 then the
AR model should be transformed into state space
representation. In the end, the Kalman ¯lter is
applied to estimate motionless data from motion
corrupted data.

In this paper, we propose the autoregressive
moving average (ARMA) model instead of the
commonly used AR model, which has been used
by Izzetoglu et al.1 before, to model the fNIRS
motionless signal. Our results showed improved
motion reduction, in terms of �SNR, compared to
the AR model. We relate this improvement to the
fact that ARMA model is richer in structure than
AR. ARMA contains more terms than AR so that it
will be ¯tted better than AR to any system. We
evaluate the performance of AR and ARMA based
methods by using real data simulated data in which
a white Gaussian noise, instead of actual motion
artifact, was added to a motionless signal. For
simulated data, ARMA based method acted better
than AR based method in noise e®ect reduction of
the original signal in term of resulting in a higher
�SNR. Our results show an improvement of about
2 dB in �SNR for ARMA model over AR model
after applying the ARMA-based Kalman ¯lter to
motion corrupted data in order to estimate motion
corrected data.

The rest of the paper is organized as follows.
In Sec. 2 the proposed algorithm is described in
detail. The data set used in this work is introduced
in that section as well. The results of the application
of the proposed method to this data set as well as
simulated data are brought in Sec. 3. Finally, Sec. 4
discusses and concludes the paper.

2. Materials and Methods

2.1. fNIRS data

The fNIRS data used in this work were recorded by
a three channel fNIRS probe attached to the sub-
ject's forehead at cognitive neuroengineering and
quantitative experimental research (CONQUER)
CollabOrative at Drexel University (3508 Market
Street, Philadelphia, PA 1904, Drexel University).
fNIRS data were collected using a continuous wave
fNIRS system. The fNIRS system is composed of
three subsystems: (i) fNIRS sensors that consist of
one light source and three photo detectors. The
light source is a multi-wavelength light emitting
diode (LED) manufactured by Epitex Inc. type
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L4�730=4�850� 40Q96-I. The LED comes in a
STEM TO- 5 package at 730 nm and 850 nm
wavelengths with an output power of 5 to 15mW.
The photo detectors are manufactured by Burr-
Brown Corporation type OPT101 and come in an
eight-pin DIP package. (ii) A control box for oper-
ating the LEDs and photo detectors. (iii) A desktop
computer running the cognitive optical brain ima-
ging (COBI) studio software developed in the lab-
oratory for data acquisition and real-time data
visualization. Three channels are used to record
fNIRS signals. Source-detector distances for the
channels are 2.8, 2.8 and 1 cm. This system is the
same that was used by Barati et al. in their recent
work.12 Sampling frequency is 2Hz. Six healthy,
right handed individuals (three males) with no
history of neurological, psychological, or psychiatric
disorders who were analgesic-free were recruited
from the Drexel University community. All partici-
pants signed the informed consent form approved by
the institutional review board (IRB) at Drexel
University. Examples of the recorded signals are
shown in Fig. 1.

Protocol
In this study we have concentrated on the motion
artifact reduction in the functional NIRS signals.
This artifact is generated due to the head motions of
the subject. Figure 1 shows the motion corrupted
oxy-Hb and deoxy-Hb in solid and dotted lines,
respectively. The following protocol has been used.

The ¯rst stage includes one minute baseline sig-
nal in which the subject was instructed to sit still
and relax (rest stage). This stage is considered as
motionless signal. Then the subject was instructed
to move his/her head up and down in a steady
frequency around 0.3Hz for 30 s (three movements
in each ten seconds). This motion artifact is con-
sidered as slow head motion. The experiment ended
with two minutes post recording with no motion
(post motion stage).

As a result each of the two oxy-Hb and deoxy-Hb
signals was contaminated by the motion artifacts.

Figure 2 shows a typical fNIRS signal including
rest and head motion stages. The post motion stage
is removed. Since then, we need just these two
parts, rest and motion, and deal with such signals
like to that presented in Fig. 2.

We ¯rst model the fNIRS signal using the com-
monly used AR model like to that was used by
Izzetoglu et al.1 as well as ARMA model which is
our proposed modi¯cation. The linear models then
should be transformed into state space represen-
tations. Finally Kalman ¯lter will be applied to
motion corrupted functional NIRS data. We
evaluate the ability of algorithm by applying it to
some simulated data in which white Gaussian noise
as arti¯cial artifact is added to motionless signal.
These noises are generated by MATLAB. We do
not set the value of their variances initially, but just
after generating by MATLAB we calculate them so
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Fig. 1. Example of fNIR signals including three stages, stage 1
is rest, and then subject was moving his/her head during stage
2, and stage 3 is post motion, solid line was used for deoxy-Hb
and the dotted line for oxy-Hb.
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Fig. 2. Example of a typical fNIR signal with rest and head
motion stages (stage 1 and stage 2, respectively).
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that they will be known to us. Since the noises are
random generated by MATLAB and we do not play
any role in their creations some variances may be
repeated. Such repeats stem from random nature of
creation of the noises. Then, the variance of such
noise is estimated through the algorithms explained
before. We expect the algorithm to be able to esti-
mate the variance of noise as close to the real var-
iance value, which is known for us now, as possible.
At the next step, the actual (real) data will be fed
to the algorithm. In this way we obtain corrected
fNIRS signals from the motion corrupted signals.
�SNR which has been used by Izzetoglu et al.1 is
calculated as a quantitative measure for comparing
the results.

2.2. Linear model

In most cases, it is likely that not the entire recorded
data is contaminated by motion artifact. Usually,
motion artifact corrupted parts of the signal are
easily distinguishable from motionless parts. Sudden
continuous high frequency oscillations are usually
easy to distinguish. However, sometimes the need
to detect motion artifact may be problematic to
some extent so that it may be considered as a dis-
advantage of Kalman ¯ltering method.

We will use motionless parts of NIRS data as well
as motion corrupted parts to calculate required par-
ameters. At ¯rst, the fNIRS motionless signal (stage
1) is modeled as an ARmodel. The optimal AR order
for the system (fNIRS motionless signal) was
obtained by Akaike information criterion (AIC) as
N ¼ 4. An AR model of order of 4, is as follows:

xk ¼ a1xk�1 þ � � � þ a4xk�4 þ wk: ð1Þ
We can see from Eq. (1) how a sample of signal in the
present time point k is linearly related to its previous
values and to the noise.

In Eq. (1), wk is a white Gaussian noise that its
variance will be calculated later.

where ai, i ¼ 1; . . . ; 4 are AR coe±cients. We did
not obtain the coe±cients manually, but we used
\ar" function in MATLAB to obtain them directly
and automatically.

At the next stage, the linear model is transformed
into the state space representation as below1;

xk ¼ Axk�1 þwk; ð2Þ
zk ¼ Hxk þ vk; ð3Þ

where

xk ¼

xk

xk�1

..

.

xk�Nþ1

2
666664

3
777775
N�1

; wk ¼

wk

0

..

.

0

2
666664

3
777775
N�1

: ð4Þ

Here zk is the motion corrupted signal vector, xk

is the motionless signal vector, wk is the system
noise vector and vk is the measurement noise. In
general, A is an N�N matrix and H is a 1�N row
vector as follows1:

A¼

�mN �mN�1 �mN�2 . . . �m2 �m1

1 0 0 . . . 0 0

0 1 0 . . . 0 0

..

.

0 0 0 . . . 1 0

2
666666664

3
777777775
N�N

ð5Þ
and

H ¼ ½1 0 . . . 0 0�1�N : ð6Þ
As it was mentioned before, N ¼ 4 here.

To estimate the covariance of system's noise, we
assume

ŵkþ1 ¼ zkþ1 �Gxk; ð7Þ
where

G ¼ ½�m1 �m2 �m3 �m4�: ð8Þ
Here xk is the AR sample vector and zk is the

measured signal. Index k contains those time points
in which we have motionless signal. Eventually,
variance of ŵkþ1 is calculated and considered as an
estimation of the system's noise. Similarly, to esti-
mate the variance of the measuring noise or motion
artifact we assume:

v̂kþ1 ¼ zkþ1 �Hxk ð9Þ
where

H is the same as that it was brought in (8).
In Eq. (9) index k includes those time points

during which head motions of the subject exist.
We assume the statistics of the system and the

measurement noise to be wk and vk, respectively,
and also they are independent of each other, with
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white Gaussian distributions wk � Nð0;QÞ, vk �
Nð0;RÞ.1 Kalman ¯ltering equations are as follows1:

. Time update equations:

x̂�
k ¼ Ax̂�

k�1; ð10Þ
P �

k ¼ APk�1A
T þQ: ð11Þ

. Measurement update equations:

Kk ¼ P�
k H

T ðHP�
k H

T þRÞ�1; ð12Þ
x̂k ¼ x̂�

k þKkðzk �Hx̂�
k Þ; ð13Þ

Pk ¼ ðI �KkHÞP�
k : ð14Þ

In which P �
k is a priori covariance matrix (error

covariance matrix before update) as follows1:

e�k ¼ xk � x̂�
k ; P �

k ¼ E½e�k e�T
k �; ð15Þ

ek ¼ xk � x̂k; Pk ¼ E½ekeT
k �; ð16Þ

where Kk is Kalman gain matrix.11

A quantitative criterion,�SNR, as has been used
by Izzeotglu et al.1 is as follows:

�SNR ¼ SNRe � SNRi: ð17Þ
In Eq. (17), SNRe is the estimation signal to noise
ratio and SNRi is the input signal to noise ratio.
Their de¯nitions are as follows1:

SNRe ¼ 10 log
�2
x

�2
e

� �
: ð18Þ

In Eq. (18), �2
x is variance of the motionless signal

and �2
e is the variance of estimation error eðnÞ.

eðnÞ ¼ xðnÞ � x̂ðnÞ: ð19Þ
The estimation error, as we see from Eq. (19), is the
di®erence between the motionless fNIRS signal and
the corrected signal after applying Kalman ¯ltering
method.1

SNRi ¼ 10 log
�2
x

�2
v

� �
: ð20Þ

In Eq. (20), �2
v is the variance of the motion artifact.1

Now we develop an ARMA model that is a richer
model in structure than AR, for the motionless
fNIRS data. Optimal order of model is obtained
using AIC as (4,4). The parameters of model
directly and automatically were estimated using
\armax" function in MATLAB. The model that
MATLAB assumes for ARMA is as follows:

NðqÞyðnÞ ¼ CðqÞeðnÞ; ð21Þ

where

NðqÞ ¼ 1þ n1q
�1 þ n2q

�2 þ n3q
�3 þ n4q

�4 ð22Þ
and

CðqÞ ¼ 1þ c1q
�1 þ c2q

�2 þ c3q
�3 þ c4q

�4: ð23Þ
According to MATLAB help notes, for estimating
ni and ci the software uses a recursive approach
through which minimizes estimation error. Also, the
cost function is the determinant of input covariance
matrix.

Then this linear model should be converted into
a space state representation. There are numerous
state space representations for a linear system,
however we examined some of them and chose
the following representation that resulted in better
outcome in terms of �SNR as well as an acceptable
appearance of the estimated motionless signal:

xk ¼ Fxk�1 þBwk; ð24Þ
zk ¼ Hxk þ vk; ð25Þ

where

B ¼
�n1 þ c1
�n2 þ c2
�n3 þ c3
�n4 þ c4

2
664

3
775; ð26Þ

F ¼
�n1 1 0 0
�n2 0 1 0
�n3 0 0 1
�n4 0 0 0

2
664

3
775: ð27Þ

2.2.1. Estimation of variance of the

system's noise

At this step the variance of the system's noise, wk,
should be estimated. ARMA model can be written
as:

yðkÞ ¼ �n1yðk� 1Þ � � � � � n4yðk� 4Þ þ eðkÞ
þ c1eðk� 1Þ þ � � � þ c4eðk� 4Þ: ð28Þ

We can rewrite Eq. (28) as

eðkÞ ¼ yðkÞ þ n1yðk� 1Þ þ � � � þ n4yðk� 4Þ
� c1eðk� 1Þ � � � � � c4eðk� 4Þ: ð29Þ

One can obtain value of noise iteratively from
Eq. (29) by knowing the initial value of the noise.
We assume the initial values of noise as zero. After
estimating the noise in this way, the variance of the
noise can be calculated.

Motion Artifact Reduction in fNIRS
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2.2.2. Estimation of variance of the
measurement noise

To estimate the variance of the measurement noise,
vk, which is regarded as the motion artifact, the
procedure is as following. An estimation of mea-
surement noise can be as follows:

v̂kþ1 ¼ zkþ1 �Hxk: ð30Þ
Whenever v̂k is estimated, the variance of mea-
surement noise can be calculated.

By now we gathered all requirements for per-
forming Kalman ¯lter. Now, we can feed a motion
corrupted signal, which its characteristics has been
derived through our previous computations that we
elaborated above, to the Kalman ¯lter in order to
obtain motionless signal as the output of the ¯lter.
Both simulated and real (actual) data are fed to
Kalman ¯lter. The results of their outputs will be
presented in the next section.

3. Results

3.1. Simulated data

To evaluate the accuracy of the method, both AR
and ARMA based algorithms are applied to the
simulated data.

Results of applying AR based algorithm to
simulated data shown in Table 1.

In Fig. 3(a) an example of a white and Gaussian
noise is shown. Such noise added to an fNIRS signal
(stage 1) and the resulted signal is shown in (b).
and in (c) the cleaned signal by AR based method is
printed in dashed-line and the original signal from
stage 1 in solid line.

The result of testing algorithm relating to ARMA
based method is shown in Table 2.

For simulated data, the average of �SNR values
in Table 1 (AR approach) is 2.61 dB, and is 6.26 dB
in Table 2 (ARMA approach).

In Fig. 4(a) we demonstrated another white and
Gaussian noise. Such noise added to a motionless
fNIRS signal (stage 1) and the corrupted is shown in
(b). In (c) the cleaned signal by the ARMA model
and the original motionless signal are shown.

Table 1. Results of applying AR based method to
simulated data.

Trail
no.

Covariance of
Gaussian noise

Estimated covariance
of noise �SNR

1 0.10 0.12 3.21
2 0.07 0.08 1.63
3 0.08 0.10 2.63
4 0.09 0.10 2.45
5 0.07 0.08 1.82
6 0.12 0.14 2.83
7 0.10 0.14 3.70

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

(b)

0 10 20 30 40 50 60
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Xhat

data

(c)

Fig. 3. (a) A typical pattern of an arti¯cial noise (we assume
as white and Gaussian), (b) The noise in (a) added to an fNIRS
signal, (c) The contaminated signal in (b) is cleaned by AR
based method (dashed line) and the original motionless signal
(solid line).
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3.2. Real (actual) data

In this part we use the algorithms to estimate clear
data from motion corrupted real NIR signals.
Table 3 shows the calculated values of �SNR for
several signals in AR method.

Figure 5 demonstrates one of the actual motion
corrupted fNIRS signals (stage 2) and its clear
estimated one by AR based method.

The horizontal axis of Fig. 5 is not the same as in
Figs. 3 and 4 so that this issue may seem confusing.
Notice that in Figs. 3 and 4 we plotted motionless
part of signal (stage 1) while in Fig. 5 (and also in
Fig. 6 later) we plot the motion part of the signal
(stage 2). Therefore, the horizontal axis of Fig. 5
(and also 6) should be di®erent from those of Figs. 3
and 4.

The quantitative results due to computing
through ARMA based method brought in Table 4.

For real data, the average of �SNR values in
Table 3 (AR approach) is 8.7 dB, and is 10.4 dB in
Table 4 (ARMA approach).

An example of the motion artifact reduction of a
contaminated real signal in ARMAmethod, is shown
in Fig. 6 where the contaminated signal drawn as
solid line and the cleared on as dashed line.

Table 2. Results of applying ARMA based method
to simulated data.

Trail
no.

Covariance of
Gaussian noise

Estimated covariance
of noise �SNR

1 0.08 0.14 5.02
2 0.08 0.17 5.68
3 0.10 0.19 6.29
4 0.11 0.23 7.11
5 0.12 0.22 7
6 0.10 0.19 6.33
7 0.08 0.19 6.4

Table 3. Results of applying AR based method to real data.

Signal index 1 2 3 4 5 6

�SNR 10.39 6.22 9.08 7.70 10 8.94
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Fig. 4. A typical pattern of an arti¯cial noise (we assume as
white and Gaussian), (b) The noise in (a) added to an fNIRS
signal, (c) The contaminated signal in (b) is cleaned by ARMA
based method (dashed line) and the original motionless signal
(solid line).
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Fig. 5. An actual experimental contaminated signal (solid
line) from stage 2 where the subject was moving his/her head
and denoised signal (dashed line) after using AR based method.
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4. Discussion

In the previous section, the result of applying AR
based method, which has been introduced pre-
viously by Izzatoglu et al.,1 as well as ARMA based
method, which we proposed, presented. The cleared
signals of both simulated data and real data in
ARMA based approach have higher quality in
comparison to AR in term of �SNR as a quanti-
tative measure. As we see from Eqs. (3), (24) and
(25), ARMA model includes more terms rather than
AR. Therefore, ARMA can be better ¯tted to any
system.

As we saw from Tables 1 and 2, associated to
simulated data, both algorithms are successful in
estimating the white Gaussian noise variances.
According to average values which we presented in
the previous section, �SNR, as the quantitative
criterion, grows in average more than 3 dB in
ARMA results. From signal appearance point of
view, as Fig. 4(c) shows, for simulated data, the
ARMA based method was very successful in esti-
mating motionless data from motion corrupted
data. Notice that in Fig. 4(c) there are really two
signals, the corrected signal in dashed line and the

original motionless signal in solid line; but because
of precise estimation and good performance of al-
gorithm on simulated data someone may virtually
distinguish just one signal. By now, we assessed the
performance of ARMA over AR and proved, at least
for simulated data, that ARMA based method
acted better than AR based method in estimating
motionless signal from motion corrupted signal in
term of �SNR. However, some real data are also
needed to evaluate the performance in real case.

According to the average values which we pre-
sented in previous section, the quantitative measure,
�SNR, demonstrates an average improvement of
about 2 dB in ARMA results. The results of real
data verify those of simulated data and both kind of
results endorse that ARMA based method which we
proposed acted better than AR based method which
previously had been introduced by Izzetoglu et al.1

in motion artifact reduction of fNIRS signal.
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